Deep Learning‐Driven Exploration of Pyrroloquinoline Quinone Neuroprotective Activity in Alzheimer's Disease

Author:

Li Xinuo1,Sun Yuan1,Zhou Zheng2,Li Jinran1,Liu Sai1,Chen Long1,Shi Yiting1,Wang Min3,Zhu Zheying4,Wang Guangji1,Lu Qiulun1ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 211166 China

2. Department of Computer Science RWTH Aachen University 52074 Aachen Germany

3. Affiliated Brain Hospital of Nanjing Medical University Nanjing 210029 China

4. School of Pharmacy The University of Nottingham Nottingham NG7 2RD UK

Abstract

AbstractAlzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aβ, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood–brain barrier (BBB) permeability is predicted and the anti‐inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean‐DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aβ₁₋₄₂‐induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti‐neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3