A Bifunctional Liquid Fuel Cell Coupling Power Generation and V3.5+ Electrolytes Production for All Vanadium Flow Batteries

Author:

Sun Shibo1,Fang Liwei1,Guo Hui1,Sun Liping2,Liu Yong1,Cheng Yuanhui1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. China Energy Technology and Economics Research Institute China Energy Investment Corporation Ltd. Beijing 102211 P. R. China

Abstract

AbstractAll vanadium flow batteries (VFBs) are considered one of the most promising large‐scale energy storage technology, but restricts by the high manufacturing cost of V3.5+ electrolytes using the current electrolysis method. Here, a bifunctional liquid fuel cell is designed and proposed to produce V3.5+ electrolytes and generate power energy by using formic acid as fuels and V4+ as oxidants. Compared with the traditional electrolysis method, this method not only does not consume additional electric energy, but also can output electric energy. Therefore, the process cost of producing V3.5+ electrolytes is reduced by 16.3%. This fuel cell has a maximum power of 0.276 mW cm−2 at an operating current of 1.75 mA cm−2. Ultraviolet–visible spectrum and potentiometric titration identify the oxidation state of prepared vanadium electrolytes is 3.48 ± 0.06, close to the ideal 3.5. VFBs with prepared V3.5+ electrolytes deliver similar energy conversion efficiency and superior capacity retention to that with commercial V3.5+ electrolytes. This work proposes a simple and practical strategy to prepare V3.5+ electrolytes.

Funder

National Key Research and Development Program of China

State Key Laboratory of Heavy Oil Processing

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3