Multi‐Fold Fan‐Shape Surface State Induced by an Isolated Weyl Phonon Beyond No‐Go Theorem

Author:

Fu Hua‐Hua12ORCID,Liu Qing‐Bo12,Wang Zhe‐Qi12,Yang Xiang‐Feng12

Affiliation:

1. School of Physics and Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 P. R. China

2. Institute for Quantum Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China

Abstract

AbstractAbsence of any surface arc state has been regarded as the fundamental property of singular Weyl points, because they are circumvented from the Nielsen‐Ninomiya no‐go theorem. In this work, through systematic investigations on topological properties of isolated Weyl phonons (IWPs) surrounded by closed Weyl nodal walls (WNWs), which are located at the Brillouin zone (BZ) boundaries of bosonic systems, it uncovers that a new kind of phononic surface state, that is, the multi‐fold fan‐shape surface state named by us, is exhibited to connect the projections of IWP and WNWs. Importantly, the number of fan leaves in this surface state is associated with the Chern number of IWP. Moreover, the topological features of charge‐two IWP in K2Mg2O3(SG No. 96) and charge‐four IWP in Nb3Al2N (SG No. 213) confirm further the above fundamental properties of this kind of surface state. The theoretical work not only provides an effective way to seek for IWPs as well as to determine their Chern number in real materials, but also uncovers a new class of surface states in the topological Weyl complex composed of IWPs and WNWs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3