Innovative Bio‐based Hydrogel Microspheres Micro‐Cage for Neutrophil Extracellular Traps Scavenging in Diabetic Wound Healing

Author:

Xiao Yongqiang1,Ding Tao2,Fang He3,Lin Jiawei1,Chen Lili1,Ma Duan4,Zhang Tianyu1,Cui Wenguo2ORCID,Ma Jing1

Affiliation:

1. ENT Institute Department of Facial Plastic and Reconstructive Surgery Eye & ENT Hospital Fudan University Shanghai 200031 P. R. China

2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

3. Department of Burn Surgery The First Affiliated Hospital Naval Medical University Shanghai 200433 P. R. China

4. Key Laboratory of Metabolism and Molecular Medicine Ministry of Education Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai P. R. China

Abstract

AbstractNeutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half‐life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio‐based hydrogel microspheres ‘micro‐cage’, termed mPDA‐PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)‐functionalized mesoporous polydopamine (mPDA). This unique ‘micro‐cage’ construct is designed to non‐contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into ‘micro‐cage’ along with wound exudation, and cationic mPDA‐PEI immobilizes them inside the ‘micro‐cage’ through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA‐PEI@GelMA effectively mitigates pro‐inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non‐contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Postdoctoral Research Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3