Affiliation:
1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
2. Institute of Advanced Technology Beijing Institute of Technology Jinan 250300 China
3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China
Abstract
AbstractThe practical application of AZIBs is hindered by problems such as dendrites and hydrogen evolution reactions caused by the thermodynamic instability of Zinc (Zn) metal. Modification of the Zn surface through interface engineering can effectively solve the above problems. Here, sulfonate‐derivatized graphene–boronene nanosheets (G&B‐S) composite interfacial layer is prepared to modulate the Zn plating/stripping and mitigates the side reactions with electrolyte through a simple and green electroplating method. Thanks to the electronegativity of the sulfonate groups, the G&B‐S interface promotes a dendrite‐free deposition behavior through a fast desolvation process and a uniform interfacial electric field mitigating the tip effect. Theoretical calculations and QCM‐D experiments confirmed the fast dynamic mechanism and excellent mechanical properties of the G&B‐S interfacial layer. By coupling the dynamics‐mechanics action, the G&B‐S@Zn symmetric battery is cycled for a long‐term of 1900 h at a high current density of 5 mA cm−2, with a low overpotential of ≈30 mV. Furthermore, when coupled with the LMO cathode, the LMO//G&B‐S@Zn cell also exhibits excellent performance, indicating the durability of the G&B‐S@Zn anode. Accordingly, this novel multifunctional interfacial layer offers a promising approach to significantly enhance the electrochemical performance of AZIBs.
Funder
National Natural Science Foundation of China
China Academy of Space Technology
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献