A Bioinspired and Cost‐Effective Device for Minimally Invasive Blood Sampling

Author:

Zoratto Nicole1,Klein‐Cerrejon David1,Gao Daniel1,Inchiparambil Tino1,Sachs David2,Luo Zhi3,Leroux Jean‐Christophe1ORCID

Affiliation:

1. Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Switzerland

2. Institute for Mechanical Systems Department of Mechanical and Process Engineering ETH Zurich 8093 Switzerland

3. Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 P.R. China

Abstract

AbstractConventional venipuncture is invasive and challenging in low and middle‐income countries. Conversely, point‐of‐care devices paired with fingersticks, although less invasive, suffer from high variability and low blood volume collection. Recently approved microsampling devices address some of these issues but remain cost‐prohibitive for resource‐limited settings. In this work, a cost‐effective microsampling device is described for the collection of liquid blood with minimal invasiveness and sufficient volume retrieval for laboratory analyses or immediate point‐of‐care testing. Inspired by the anatomy of sanguivorous leeches, the single‐use device features a storage compartment for blood collection and a microneedle patch hidden within a suction cup. Finite Element Method simulations, corroborated by mechanical analyses, guide the material selection for device fabrication and design optimization. In piglets, the device successfully collects ≈195 µL of blood with minimal invasiveness. Additionally, a tailor‐made lid and adapter enable safe fluid transportation and integration with commercially available point‐of‐care systems for on‐site analyses, respectively. Taken together, the proposed platform holds significant promise for enhancing healthcare in the pediatric population by improving patient compliance and reducing the risk of needlestick injuries through concealed microneedles. Most importantly, given its cost‐effective fabrication, the open‐source microsampling device may have a meaningful impact in resource‐limited healthcare settings.

Funder

Eidgenössische Technische Hochschule Zürich

Botnar Research Centre for Child Health, University of Basel

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3