Molecularly Imprinted Polymer Sensor Empowered by Bound States in the Continuum for Selective Trace‐Detection of TGF‐beta

Author:

Zito Gianluigi1ORCID,Siciliano Giulia2,Seifalinezhad Aida13,Miranda Bruno1,Lanzio Vittorino4,Schwartzberg Adam4,Gigli Giuseppe2,Turco Antonio2,Rendina Ivo1,Mocella Vito1,Primiceri Elisabetta2,Romano Silvia1

Affiliation:

1. Institute of Applied Sciences and Intelligent Systems National Research Council Via Pietro Castellino 111 Napoli 80131 Italy

2. Institute of Nanotechnology National Research Council c/o Campus Ecotekne, Via Monteroni Lecce 73100 Italy

3. Department of Engineering Università degli Studi di Napoli Parthenope Centro Direzionale di Napoli, Isola C4 Naples 80143 Italy

4. Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA

Abstract

AbstractThe integration of advanced materials and photonic nanostructures can lead to enhanced biodetection capabilities, crucial in clinical scenarios and point‐of‐care diagnostics, where simplified strategies are essential. Herein, a molecularly imprinted polymer (MIP) photonic nanostructure is demonstrated, which selectively binding to transforming growth factor‐beta (TGF‐β), in which the sensing transduction is enhanced by bound states in the continuum (BICs). The MIP operating as a synthetic antibody matrix and coupled with BIC resonance, enhances the optical response to TGF‐β at imprinted sites, leading to an augmented detection capability, thoroughly evaluated through spectral shift and optical lever analogue readout. The validation underscores the MIP‐BIC sensor capability to detect TGF‐β in spiked saliva, achieving a limit of detection of 10 fM and a resolution of 0.5 pM at physiological concentrations, with a precision of two orders of magnitude above discrimination threshold in patients. The MIP tailored selectivity is highlighted by an imprinting factor of 52, showcasing the sensor resistance to interference from other analytes. The MIP‐BIC sensor architecture streamlines the detection process eliminating the need for complex sandwich immunoassays and demonstrates the potential for high‐precision quantification. This positions the system as a robust tool for biomarker detection, especially in real‐world diagnostic scenarios.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3