Affiliation:
1. National Engineering Research Center for Advanced Polymer Processing Technology Key Laboratory of Materials Processing and Mold (Ministry of Education) Zhengzhou University Zhengzhou 450002 China
2. Yunnan Tobacco Quality Inspection and Supervision Station Kunming 650106 China
Abstract
AbstractConductive hydrogels exhibit high potential in the fields of wearable sensors, healthcare monitoring, and e‐skins. However, it remains a huge challenge to integrate high elasticity, low hysteresis, and excellent stretch‐ability in physical crosslinking hydrogels. This study reports the synthesis of polyacrylamide (PAM)‐3‐(trimethoxysilyl) propyl methacrylate‐grafted super arborized silica nanoparticle (TSASN)‐lithium chloride (LiCl) hydrogel sensors with high elasticity, low hysteresis, and excellent electrical conductivity. The introduction of TSASN enhances the mechanical strength and reversible resilience of the PAM‐TSASN‐LiCl hydrogels by chain entanglement and interfacial chemical bonding, and provides stress‐transfer centers for external‐force diffusion. These hydrogels show outstanding mechanical strength (a tensile stress of 80–120 kPa, elongation at break of 900‐1400%, and dissipated energy of 0.8–9.6 kJ m−3), and can withstand multiple mechanical cycles. LiCl addition enables the PAM‐TSASN‐LiCl hydrogels to exhibit excellent electrical properties with an outstanding sensing performance (gauge factor = 4.5), with rapid response (210 ms) within a wide strain‐sensing range (1–800%). These PAM‐TSASN‐LiCl hydrogel sensors can detect various human‐body movements for prolonged durations of time, and generate stable and reliable output signals. The hydrogels fabricated with high stretch‐ability, low hysteresis, and reversible resilience, can be used as flexible wearable sensors.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献