ITPR2 Mediated Calcium Homeostasis in Oligodendrocytes is Essential for Myelination and Involved in Depressive‐Like Behavior in Adolescent Mice

Author:

Zhang Ming1ORCID,Zhi Na12,Feng Jiaxiang1,Liu Yingqi1,Zhang Meixia3,Liu Dingxi4,Yuan Jie12,Dong Yuhao1,Jiang Sufang1,Ge Junye1,Wu Shengxi1ORCID,Zhao Xianghui1ORCID

Affiliation:

1. Department of Neuroscience Air Force Medical University Xi'an 710032 P. R. China

2. College of Life Sciences Northwest University Xi'an 710127 P. R. China

3. School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

4. First Affiliated Hospital of Medical College Xi'an Jiaotong University Xi'an 710061 P. R. China

Abstract

AbstractCa2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5‐trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage‐dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL‐specific deletion of Itpr2 exhibit anxiety/depressive‐like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK‐CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2‐ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre‐OLs; additionally, the involvement of OLs‐originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin‐associated psychiatric disorders.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3