Ice‐Enabled Transfer of Graphene on Copper Substrates Enhanced by Electric Field and Cu2O

Author:

Ma Hechuan1,Chen Xiaoming12ORCID,Han Yufei1,Zhang Jie3,Wen Kaiqiang1,Cheng Siyi1,Zhao Quanyi1,Wang Yijie1,Wu Jianyang4,Shao Jinyou1

Affiliation:

1. Micro‐ and Nanotechnology Research Center State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an Shannxi 710049 China

2. XJTU‐POLIMI Joint School of Design and Innovation Xi'an Jiaotong University Xi'an Shaanxi 710049 China

3. Electronic Materials Research Lab Key Laboratory of the Ministry of Education Xi'an Jiaotong University Xi'an Shaanxi 710049 China

4. Department of Physics Jiujiang Research Institute and Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Research Xiamen University Xiamen 361005 China

Abstract

AbstractGraphene films grown by the chemical vapor deposition (CVD) method suffer from contamination and damage during transfer. Herein, an innovative ice‐enabled transfer method under an applied electric field and in the presence of Cu2O (or Cu2O‐Electric‐field Ice Transfer, abbreviated as CEIT) is developed. Ice serves as a pollution‐free transfer medium while water molecules under the electric field fully wet the graphene surface for a bolstered adhesion force between the ice and graphene. Cu2O is used to reduce the adhesion force between graphene and copper. The combined methodology in CEIT ensures complete separation and clean transfer of graphene, resulting in successfully transferred graphene to various substrates, including polydimethylsiloxane (PDMS), Teflon, and C4F8 without pollution. The graphene obtained via CEIT is utilized to fabricate field‐effect transistors with electrical performances comparable to that of intrinsic graphene characterized by small Dirac points and high carrier mobility. The carrier mobility of the transferred graphene reaches 9090 cm2 V−1 s−1, demonstrating a superior carrier mobility over that from other dry transfer methods. In a nutshell, the proposed clean and efficient transfer method holds great potential for future applications of graphene.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3