Spin State Disproportionation in Insulating Ferromagnetic LaCoO3 Epitaxial Thin Films

Author:

Chen Shanquan1,Chang Jhong‐Yi2,Zhang Qinghua3,Li Qiuyue45,Lin Ting3,Meng Fanqi3,Huang Haoliang6,Si Yangyang1,Zeng Shengwei7,Yin Xinmao8,Duong My Ngoc2,Lu Yalin6,Chen Lang9,Guo Er‐Jia3,Chen Hanghui510,Chang Chun‐Fu11,Kuo Chang‐Yang212,Chen Zuhuang113ORCID

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 China

2. Department of Electrophysics National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

3. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. Department of Electronic Science East China Normal University Shanghai 200241 China

5. NYU‐ECNU Institute of Physics NYU Shanghai Shanghai 200124 China

6. Hefei National Research Center for Physical Sciences at the Microscale and Anhui Laboratory of Advanced Photon Science and Technology University of Science and Technology of China Hefei 230026 China

7. Department of Physics Faculty of Science National University of Singapore Singapore 117551 Singapore

8. Shanghai Key Laboratory of High Temperature Superconductors Physics Department Shanghai University Shanghai 200444 China

9. Department of Physics Southern University of Science and Technology Shenzhen 518055 China

10. Department of Physics New York University New York NY 10012 USA

11. Max‐Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany

12. National Synchrotron Radiation Research Center 101 Hsin‐Ann Road Hsinchu 30076 Taiwan

13. Flexible Printed Electronics Technology Center Harbin Institute of Technology Shenzhen 518055 China

Abstract

AbstractThe origin of insulating ferromagnetism in epitaxial LaCoO3 films under tensile strain remains elusive despite extensive research efforts are devoted. Surprisingly, the spin state of its Co ions, the main parameter of its ferromagnetism, is still to be determined. Here, the spin state in epitaxial LaCoO3 thin films is systematically investigated to clarify the mechanism of strain‐induced ferromagnetism using element‐specific X‐ray absorption spectroscopy and dichroism. Combining with the configuration interaction cluster calculations, it is unambiguously demonstrated that Co3+ in LaCoO3 films under compressive strain (on LaAlO3 substrate) is practically a low‐spin state, whereas Co3+ in LaCoO3 films under tensile strain (on SrTiO3 substrate) have mixed high‐spin and low‐spin states with a ratio close to 1:3. From the identification of this spin state ratio, it is inferred that the dark strips observed by high‐resolution scanning transmission electron microscopy indicate the position of Co3+ high‐spin state, i.e., an observation of a spin state disproportionation in tensile‐strained LaCoO3 films. This consequently explains the nature of ferromagnetism in LaCoO3 films. The study highlights the importance of spin state degrees of freedom, along with thin‐film strain engineering, in creating new physical properties that do not exist in bulk materials.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3