Injectable and Self‐Curing Single‐Component Hydrogel for Stem Cell Encapsulation and In Vivo Bone Regeneration

Author:

Cheon Seo Young1,Park Ji Sun1,Lee Yeeun1,Lee Chaehyun1,Jeon Hayoung1,Lee Donghyun1,Kim Se Hee1,Lim Seong Gi1,Koo Heebeom1ORCID

Affiliation:

1. Department of Medical Life Sciences Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute College of Medicine The Catholic University of Korea 222 Banpo‐daero, Seocho‐gu Seoul 06591 Republic of Korea

Abstract

AbstractAn ideal hydrogel for stem cell therapy would be injectable and efficiently promote stem cell proliferation and differentiation in body. Herein, an injectable, single‐component hydrogel with hyaluronic acid (HA) modified with phenylboronic acid (PBA) and spermidine (SM) is introduced. The resulting HAps (HA‐PBA‐SM) hydrogel is based on the reversible crosslinking between the diol and the ionized PBA, which is stabilized by the SM. It has a shear‐thinning property, enabling its injection through a syringe to form a stable hydrogel inside the body. In addition, HAps hydrogel undergoes a post‐injection “self‐curing,” which stiffens the hydrogel over time. This property allows the HAps hydrogel to meet the physical requirements for stem cell therapy in rigid tissues, such as bone, while maintaining injectability. The hydrogel enabled favorable proliferation of human mesenchymal stem cells (hMSCs) and promoted their differentiation and mineralization. After the injection of hMSCs‐containing HAps into a rat femoral defect model, efficient osteogenic differentiation of hMSCs and bone regeneration is observed. The study demonstrates that simple cationic modification of PBA‐based hydrogel enabled efficient gelation with shear‐thinning and self‐curing properties, and it would be highly useful for stem cell therapy and in vivo bone regeneration.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3