Approaching the Zero‐Power Operating Limit in a Self‐Coordinated Organic Protonic Synapse

Author:

Liu Shuzhi12,He Zhilong1,Zhang Bin3,Zhong Xiaolong2,Guo Bingjie1,Chen Weilin2,Duan Hongxiao2,Tong Yi4,He Haidong5,Chen Yu3,Liu Gang12ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Department of Micro/Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China

3. School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China

4. Suzhou Laboratory Suzhou 215000 China

5. Minhang Hospital Fudan University 170 Xinsong Road Shanghai 201199 China

Abstract

AbstractHigh‐performance artificial synapse with nonvolatile memory and low power consumption is a perfect candidate for brainoid intelligence. Unfortunately, due to the energy barrier paradox between ultra‐low power and nonvolatile modulation of device conductances, it is still a challenge at the moment to construct such ideal synapses. Herein, a proton‐reservoir type 4,4′,4″,4'''‐(Porphine‐5,10,15,20‐tetrayl) tetrakis (benzenesulfonic acid) (TPPS) molecule and fabricated organic protonic memristors with device width of 10 µm to 100 nm is synthesized. The occurrence of sequential proton migration and interfacial self‐coordinated doping will introduce new energy levels into the molecular bandgap, resulting in effective and nonvolatile modulation of device conductance over 64 continuous states with retention exceeding 30 min. The power consumptions of modulating and reading the device conductance approach the zero‐power operating limits, which range from 16.25 pW to 2.06 nW and 6.5 fW to 0.83 pW, respectively. Finally, a robust artificial synapse is successfully demonstrated, showing spiking‐rate‐dependent plasticity (SRDP) and spiking‐timing‐dependent plasticity (STDP) characteristics with ultra‐low power of 0.66 to 0.82 pW, as well as 100 long‐term depression (LTD)/potentiation (LTP) cycles with 0.14%/0.30% weight variations.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3