Ultrathin All‐Solid‐State MoS2‐Based Electrolyte Gated Synaptic Transistor with Tunable Organic–Inorganic Hybrid Film

Author:

Oh Jungyeop1,Park Seohak1,Lee Sang Hun1,Kim Sungkyu2,Lee Hyeonji1,Lee Changhyeon3,Hong Woonggi4,Cha Jun‐Hwe1,Kang Mingu1,Jin Jun Hyup4,Im Sung Gap3,Kim Min Ju4,Choi Sung‐Yool1ORCID

Affiliation:

1. School of Electrical Engineering Graduate School of Semiconductor Technology Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Department of Nanotechnology and Advanced Materials Engineering Sejong University 209 Neungdong‐ro, Gwangjin‐gu Seoul 05006 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Graphene/2D Materials Research Center Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

4. School of Electronics and Electrical Engineering Dankook University Gyeonggi 16890 Republic of Korea

Abstract

AbstractElectrolyte‐gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi‐state storage capabilities. To demonstrate high‐density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D‐based EGSTs has challenges in achieving large‐area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large‐scale process‐compatible, all‐solid‐state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub‐30 nm organic‐inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD‐based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 109, state retention exceeding 103, and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 × 104 cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system‐level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3