Fast Pure Shift NMR Spectroscopy Using Attention‐Assisted Deep Neural Network

Author:

Zhan Haolin1ORCID,Liu Jiawei1,Fang Qiyuan1,Chen Xinyu1,Ni Yang1,Zhou Lingling1

Affiliation:

1. Department of Biomedical Engineering Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument Anhui Province Key Laboratory of Measuring Theory and Precision Instrument School of Instrument Science and Opto‐electronics Engineering Hefei University of Technology Hefei 230009 China

Abstract

AbstractPure shift NMR spectroscopy enables the robust probing on molecular structure and dynamics, benefiting from great resolution enhancements. Despite extensive application landscapes in various branches of chemistry, the long experimental times induced by the additional time dimension generally hinder its further developments and practical deployments, especially for multi‐dimensional pure shift NMR. Herein, this study proposes and implements the fast, reliable, and robust reconstruction for accelerated pure shift NMR spectroscopy with lightweight attention‐assisted deep neural network. This deep learning protocol allows one to regain high‐resolution signals and suppress undersampling artifacts, as well as furnish high‐fidelity signal intensities along with the accelerated pure shift acquisition, benefitting from the introduction of the attention mechanism to highlight the spectral feature and information of interest. Extensive results of simulated and experimental NMR data demonstrate that this attention‐assisted deep learning protocol enables the effective recovery of weak signals that are almost drown in the serious undersampling artifacts, and the distinction and recognition of close chemical shifts even though using merely 5.4% data, highlighting its huge potentials on fast pure shift NMR spectroscopy. As a result, this study affords a promising paradigm for the AI‐assisted NMR protocols toward broader applications in chemistry, biology, materials, and life sciences, and among others.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3