RGB Thermally Activated Delayed Fluorescence Emitters for Organic Light‐Emitting Diodes toward Realizing the BT.2020 Standard

Author:

Fan Xiaochun1,Hao Xiaoyao1,Huang Feng1,Yu Jia12,Wang Kai13ORCID,Zhang Xiaohong12ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China

2. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 P. R. China

3. Jiangsu Key Laboratory of Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 P. R. China

Abstract

AbstractWith the surging demand for ultra‐high‐resolution displays, the International Telecommunication Union (ITU) announce the next‐generation color gamut standard, named ITU‐R Recommendation BT.2020, which not only sets a seductive but challenging milestone for display technologies but also urges researchers to recognize the importance of color coordinates. Organic light‐emitting diodes (OLEDs) are an important display technology in current daily life, but they face challenges in approaching the BT.2020 standard. Thermally activated delayed fluorescence (TADF) emitters have bright prospects in OLEDs because they possess 100% theoretical exciton utilization. Thus, the development of TADF emitters emitting primary red (R), green (R), and blue (B) emission is of great significance. Here, a comprehensive overview of the latest advancements in TADF emitters that exhibit Commission Internationale de l'Éclairage (CIE) coordinates surpassing the National Television System Committee (NTSC) and approaching BT.2020 standards is presented. Rational strategies for molecular designs, as well as the resulting photophysical properties and OLED performances, are discussed to elucidate the underlying mechanisms for shifting the CIE coordinates of both donor‐acceptor and multiple resonance (MR) typed TADF emitters toward the BT.2020 standard. Finally, the challenges in realization of the wide‐color‐gamut BT.2020 standard and the prospects for this research area are provided.

Funder

National Natural Science Foundation of China

Science and Technology Program of Suzhou

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3