Affiliation:
1. Nano Carbon Device Research Center National Institute of Advanced Industrial Science and Technology Tsukuba Central 5, 1‐1‐1, Higashi Tsukuba Ibaraki 305‐8565 Japan
Abstract
AbstractA multimodal deep‐learning (MDL) framework is presented for predicting physical properties of a ten‐dimensional acrylic polymer composite material by merging physical attributes and chemical data. The MDL model comprises four modules, including three generative deep‐learning models for material structure characterization and a fourth model for property prediction. The approach handles an 18‐dimensional complexity, with ten compositional inputs and eight property outputs, successfully predicting 913 680 property data points across 114 210 composition conditions. This level of complexity is unprecedented in computational materials science, particularly for materials with undefined structures. A framework is proposed to analyze the high‐dimensional information space for inverse material design, demonstrating flexibility and adaptability to various materials and scales, provided sufficient data are available. This study advances future research on different materials and the development of more sophisticated models, drawing the authors closer to the ultimate goal of predicting all properties of all materials.
Funder
National Institute of Advanced Industrial Science and Technology
New Energy and Industrial Technology Development Organization
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献