Unlocking the Potential of CuAgZr Metallic Glasses: A Comprehensive Exploration with Combinatorial Synthesis, High‐Throughput Characterization, and Machine Learning

Author:

Wieczerzak Krzysztof1ORCID,Groetsch Alexander12,Pajor Krzysztof3,Jain Manish14,Müller Arnold M.5,Vockenhuber Christof5,Schwiedrzik Jakob1,Sharma Amit1,Klimashin Fedor F.1,Michler Johann1

Affiliation:

1. Swiss Federal Laboratories for Materials Science and Technology Laboratory of Mechanics of Materials and Nanostructures Empa Feuerwerkerstrasse 39 Thun CH‐3602 Switzerland

2. Department of Materials Science and Engineering University of California Irvine CA 92617 USA

3. Faculty of Metals Engineering and Industrial Computer Science AGH University of Science and Technology Al. Mickiewicza 30 Krakow 30059 Poland

4. School of Mechanical and Manufacturing Engineering University of New South Wales (UNSW Sydney) Kensington NSW 2052 Australia

5. Laboratory of Ion Beam Physics ETH Zurich Schafmattstrasse 20 Zurich CH‐8093 Switzerland

Abstract

AbstractIn this work, the CuAgZr metallic glasses (MGs) are investigated, a promising material for biomedical applications due to their high strength, corrosion resistance, and antibacterial activity. Using an integrated approach of combinatorial synthesis, high‐throughput characterization, and machine learning (ML), the mechanical properties of CuAgZr MGs are efficiently explored. The investigation find that post‐deposition oxidation in inter‐columnar regions with looser packing causes high oxygen content in Cu‐rich regions, significantly affecting the alloys' mechanical behavior. The study also reveals that nanoscale structural features greatly impact plastic yielding and flow in the alloys. ML algorithms are tested, and the multi‐layer perceptron algorithm produced satisfactory predictions for the alloys' hardness of untested alloys, providing valuable clues for future research. The work demonstrates the potential of using combinatorial synthesis, high‐throughput characterization, and ML  techniques to facilitate the development of new MGs with improved strength and economic feasibility.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3