Mass Production of Customizable Core–Shell Active Materials in Seconds by Nano‐Vapor Deposition for Advancing Lithium Sulfur Battery

Author:

Feng Lanxiang12,Zhu Zhiwei1,Yan Rui1,Fu Xuewei1,He Xuewei1,Wu Dichen1,Li Hua1,Guo Zaiping3,Yang Wei1,Wang Yu1ORCID

Affiliation:

1. College of Polymer Science and Engineering Sichuan University Chengdu 610065 China

2. School of Chemistry and Environment Southwest Minzu University Chengdu 610225 China

3. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide South Australia 5005 Australia

Abstract

AbstractRational design and scalable production of core–shell sulfur‐rich active materials is vital for not only the practical success of future metal–sulfur batteries but also for a deep insight into the core–shell design for sulfur‐based electrochemistry. However, this is a big challenge mainly due to the lack of efficient strategy for realizing precisely controlled core–shell structures. Herein, by harnessing the frictional heating and dispersion capability of the nanostorm technology developed in the authors’ laboratory, it is surprisingly found that sulfur‐rich active particles can be coated with on‐demand shell nanomaterials in seconds. To understand the process, a micro‐adhesion guided nano‐vapor deposition (MAG‐NVD) working mechanism is proposed. Enabled by this technology, customizable nano‐shell is realized in a super‐efficient and solvent‐free way. Further, the different roles of shell characteristics in affecting the sulfur‐cathode electrochemical performance are discovered and clarified. Last, large‐scale production of calendaring‐compatible cathode with the optimized core–shell active materials is demonstrated, and a Li–S pouch‐cell with 453 Wh kg−1@0.65 Ah is also reported. The proposed nano‐vapor deposition may provide an attractive alternative to the well‐known physical and chemical vapor deposition technologies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3