Affiliation:
1. Henan‐Macquarie University Joint Centre for Biomedical Innovation Henan Key Laboratory of Brain Targeted Bio‐nanomedicine Henan International Joint Laboratory of Nanobiomedicine School of Life Sciences Henan University Kaifeng Henan 475004 China
2. Henan Provincial Engineering Center for Tumor Molecular Medicine School of Basic Medical Science Henan University Kaifeng Henan 475004 China
3. School of Ophthalmology and Optometry, School of Biomedical Engineering Wenzhou Medical University 270 Xuanyuanxi Road Wenzhou Zhejiang 325027 China
Abstract
AbstractGene‐editing technology shows great potential in glioblastoma (GBM) therapy. Due to the complexity of GBM pathogenesis, a single gene‐editing‐based therapy is unlikely to be successful; therefore, a multi‐gene knockout strategy is preferred for effective GBM inhibition. Here, a non‐invasive, biodegradable brain‐targeted CRISPR/Cas12a nanocapsule is used that simultaneously targeted dual oncogenes, EGFR and PLK1, for effective GBM therapy. This cargo nanoencapsulation technology enables the CRISPR/Cas12a system to achieve extended blood half‐life, efficient blood‐brain barrier (BBB) penetration, active tumor targeting, and selective release. In U87MG cells, the combinatorial gene editing system resulted in 61% and 33% knockout of EGFR and PLK1, respectively. Following systemic administration, the CRISPR/Cas12a system demonstrated promising brain tumor accumulation that led to extensive EGFR and PLK1 gene editing in both U87MG and patient‐derived GSC xenograft mouse models with negligible off‐target gene editing detected through NGS. Additionally, CRISPR/Cas12a nanocapsules that concurrently targeted the EGFR and PLK1 oncogenes showed superior tumor growth suppression and significantly improved the median survival time relative to nanocapsules containing single oncogene knockouts, signifying the potency of the multi‐oncogene targeting strategy. The findings indicate that utilization of the CRISPR/Cas12a combinatorial gene editing technique presents a practical option for gene therapy in GBM.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province