Affiliation:
1. State Key Laboratory for Physical Chemistry of Solid Surfaces Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
2. Beijing Synchrotron Radiation Laboratory Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractPolysulfides aqueous redox flow batteries (PS‐ARFBs) with large theoretical capacity and low cost are one of the most promising solutions for large‐scale energy storage technology. However, sluggish electrochemical redox kinetics and nonnegligible crossover of aqueous polysulfides restrict the battery performances. Herein, it is found that the Co, Zn dual‐doped N‐C complex have enhanced electrochemical adsorption behaviors for Na2S2. It exhibits significantly electrochemical redox activity compared to the bare glassy carbon electrode. And the redox reversibility is also improved from ΔV = 210 mV on Zn‐doped N‐C complex to ΔV = 164 mV on Co, Zn‐doped N‐C complex. Furthermore, membrane‐electrode assembly (MEA) based on Co, Zn‐doped N‐C complex is firstly proposed to enhance the redox performances and relieve the crossover in PS‐ARFBs. Thus, an impressively high and reversible capacity of 157.5 Ah L−1 for Na2S2 with a high capacity utilization of 97.9% could be achieved. Moreover, a full cell PS‐ARFB with Na2S2 anolyte and Na4[Fe(CN)6] catholyte exhibits high energy efficiency ≈88.4% at 10 mA cm−2. A very low capacity decay rate of 0.0025% per cycle is also achieved at 60 mA cm−2 over 200 cycles.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献