Btg2 Promotes Focal Segmental Glomerulosclerosis via Smad3‐Dependent Podocyte‐Mesenchymal Transition

Author:

Dan Hu Qiong‐1234,Wang Hong‐Lian1,Liu Jian35,He Tao6,Tan Rui‐Zhi12,Zhang Qiong3,Su Hong‐Wei7,Kantawong Fahsai2,Lan Hui‐Yao8,Wang Li14ORCID

Affiliation:

1. Research Center of Integrated Traditional Chinese and Western Medicine the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Sichuan 646000 China

2. Department of Medical Technology Faculty of Associated Medical Sciences Chiang Mai University Chiang Mai 50200 Thailand

3. Department of Nephrology the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Sichuan 646000 China

4. Institute of Integrated Chinese and Western Medicine Southwest Medical University Luzhou 646000 China

5. Department of Nephrology the Affiliated Hospital of Southwest Medical University Sichuan 646000 China

6. Cancer Medicine Institute College of Basic Medical Sciences Southwest Medical University Sichuan 646000 China

7. Department of Urology the Affiliated Hospital of Southwest Medical University Sichuan 646000 China

8. Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences the Chinese University of Hong Kong Hong Kong 999077 China

Abstract

AbstractPodocyte injury plays a critical role in the progression of focal segmental glomerulosclerosis (FSGS). Here, it is reported that B‐cell translocation gene 2 (Btg2) promotes Adriamycin (ADR)‐induced FSGS via Smad3‐dependent podocyte‐mesenchymal transition. It is found that in FSGS patients and animal models, Btg2 is markedly upregulated by podocytes and correlated with progressive renal injury. Podocyte‐specific deletion of Btg2 protected against the onset of proteinuria and glomerulosclerosis in ADR‐treated mice along with inhibition of EMT markers such as α‐SMA and vimentin while restoring epithelial marker E‐cadherin. In cultured MPC5 podocytes, overexpression of Btg2 largely promoted ADR and TGF‐β1‐induced EMT and fibrosis, which is further enhanced by overexpressing Btg2 but blocked by disrupting Btg2. Mechanistically, Btg2 is rapidly induced by TGF‐β1 and then bound Smad3 but not Smad2 to promote Smad3 signaling and podocyte EMT, which is again exacerbated by overexpressing Btg2 but blocked by deleting Btg2 in MPC5 podocytes. Interestingly, blockade of Smad3 signaling with a Smad3 inhibitor SIS3 is also capable of inhibiting Btg2 expression and Btg2‐mediated podocyte EMT, revealing a TGF‐β/Smad3‐Btg2 circuit mechanism in Btg2‐mediated podocyte injury in FSGS. In conclusion, Btg2 is pathogenic in FSGS and promotes podocyte injury via a Smad3‐dependent EMT pathway.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3