Macroscale Superlubricity on Nanoscale Graphene Moiré Structure‐Assembled Surface via Counterface Hydrogen Modulation

Author:

Wang Yongfu12ORCID,Yang Xing1,Liang Huiting1,Zhao Jun3,Zhang Junyan14

Affiliation:

1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 China

2. Key Laboratory of Science and Technology on Wear and Protection of Materials Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

3. Division of Machine Elements Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå SE‐97187 Sweden

4. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractInterlayer incommensurateness slippage is an excellent pathway to realize superlubricity of van der Waals materials; however, it is instable and heavily depends on twisted angle and super‐smooth substrate which pose great challenges for the practical application of superlubricity. Here, macroscale superlubricity (0.001) is reported on countless nanoscale graphene moiré structure (GMS)‐assembled surface via counterface hydrogen (H) modulation. The GMS‐assembled surface is formed on grinding balls via sphere‐triggered strain engineering. By the H modulation of counterface diamond‐like carbon (25 at.% H), the wear of GMS‐assembled surface is significantly reduced and a steadily superlubric sliding interface between them is achieved, based on assembly face charge depletion and H‐induced assembly edge weakening. Furthermore, the superlubricity between GMS‐assembled and DLC25 surfaces holds true in wide ranges of normal load (7–11 N), sliding velocity (0.5–27 cm −1s), contact area (0.4×104–3.7×104 µm2), and contact pressure (0.19–1.82 GPa). Atomistic simulations confirm the preferential formation of GMS on a sphere, and demonstrate the superlubricity on GMS‐assembled surface via counterface H modulation. The results provide an efficient tribo‐pairing strategy to achieve robust superlubricity, which is of significance for the engineering application of superlubricity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3