Hierarchically Structured Deformation‐Sensing Mechanochromic Pigments

Author:

Clough Jess M.1ORCID,Kilchoer Cédric1ORCID,Wilts Bodo D.12ORCID,Weder Christoph1ORCID

Affiliation:

1. Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 Fribourg 1700 Switzerland

2. Chemistry and Physics of Materials University of Salzburg Jakob‐Haringer‐Strasse 2a Salzburg 5020 Austria

Abstract

AbstractMechanochromic materials alter their color in response to mechanical force and are useful for both fundamental studies and practical applications. Several approaches are used to render polymers mechanochromic, but they generally suffer from limitations in sensing range, capacity to provide quantitative information, and their capability to enable broad and simple implementation. Here, is it reported that these problems can be overcome by combining photonic structures, which alter their reflection upon deformation, with covalent mechanophores, whose spectral properties change upon mechanically induced bond scission, in hierarchically structured mechanochromic pigments. This is achieved by synthesizing microspheres consisting of an elastic polymer with spiropyran‐based cross‐links and non‐close‐packed silica nanoparticles. A strain of less than 1% can be detected in a shift of the reflection band from the photonic structure, while the onset strain for the conversion of the spiropyran into fluorescent merocyanine ranges from 30% to 70%, creating a broad strain detection range. The two responses are tailorable and synergistic, permitting the activation strain for the mechanophore response to be tuned. The mechano‐sensing photonic pigments are demonstrated to be readily incorporated into different polymeric materials of interest and quantitatively probe spatially heterogeneous deformations over a large strain range.

Funder

Adolphe Merkle Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3