High‐Performance n‐Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency

Author:

Feng Kui12,Wang Junwei1,Jeong Sang Young3,Yang Wanli1,Li Jianfeng1,Woo Han Young3,Guo Xugang1ORCID

Affiliation:

1. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China

2. Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen Guangdong 518055 China

3. Department of Chemistry Korea University Anamro 145 Seoul 02841 Republic of Korea

Abstract

Abstractn‐Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer‐based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side‐chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side‐chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side‐chain size delivers a champion σ up to 92.0 S cm−1 and a power factor (PF) as high as 94.3 µW m−1 K−2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution‐processing n‐doped polymers. In‐depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12‐based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n‐type polymers with substantial σ for improving organic thermoelectric performance.

Funder

National Natural Science Foundation of China

National Research Foundation of Korea

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3