Atom‐Modified gDNA Enhances Cleavage Activity of TtAgo Enabling Ultra‐Sensitive Nucleic Acid Testing

Author:

Zhang Jun12,Chen Miaomiao1,Jiang Huan1,Sun Huifang1,Ren Jianing3,Yang Xin1,Liu Shanshan1,Wang Dongsheng4,Huang Zhen2,Liu Jianping3,Ma Daiyuan3,Guo Xiaolan1,Luo Guangcheng1ORCID

Affiliation:

1. Department of Clinical Laboratory Affiliated Hospital of North Sichuan Medical College School of Laboratory Medicine & Translational Medicine Research Center North Sichuan Medical College Nanchong 637000 China

2. Key Laboratory of Bio‐Resource and Eco‐environment of Ministry of Education College of Life Sciences Sichuan University Chengdu Sichuan 610064 China

3. Department of Oncology & Department of Rheumatology and Immunology Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China

4. Department of Clinical Laboratory Sichuan Cancer Hospital School of Medicine University of Electronic Science and Technology of China Chengdu 610041 China

Abstract

AbstractThe DNA‐guided (gDNA) Argonaute from Thermus thermophilus (TtAgo) has little potential for nucleic acid detection and gene editing due to its poor dsDNA cleavage activity at relatively low temperature. Herein, the dsDNA cleavage activity of TtAgo is enhanced by using 2′‐fluorine (2′F)‐modified gDNA and developes a novel nucleic acid testing strategy. This study finds that the gDNA with 2′F‐nucleotides at the 3′‐end (2′F‐gDNA) can promote the assembly of the TtAgo‐guide‐target ternary complex significantly by increasing its intermolecular force to target DNA and TtAgo, thereby providing ≈40‐fold activity enhancement and decreasing minimum reaction temperature from 65 to 60 °C. Based on this outstanding advance, a novel nucleic acid testing strategy is proposed, termed FAST, which is performed by using the 2′F‐gDNA/TtAgo for target recognition and combining it with Bst DNA polymerase for nucleic acid amplification. By integrating G‐quadruplex and Thioflavin T, the FAST assay achieves one‐pot real‐time fluorescence analysis with ultra‐sensitivity, providing a limit of detection up to 5 copies (20 µL reaction mixture) for miR‐21 detection. In summary, an atom‐modification‐based strategy has been developed for enhancing the cleavage activity of TtAgo efficiently, thereby improving its practicability and establishing a TtAgo‐based nucleic acid testing technology with ultra‐sensitivity and high‐specificity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3