Affiliation:
1. Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an 710021 P. R. China
2. Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology Shaanxi University of Science and Technology Xi'an 710021 P. R. China
Abstract
AbstractThe rapid development of modern electrical equipment has led to urgent demands for electrical insulating materials with mechanical reliability and excellent dielectric properties. Herein, basalt nanosheets (BSNs) with high aspect ratios (≈780.1) are first exfoliated from basalt scales (BS) through a reliable chemical/mechanical approach. Meanwhile, inspired by the layered architecture of natural nacre, nacre‐mimetic composite nanopapers are reported containing a 3D aramid nanofibers (ANF) framework as a matrix and BSNs as ideal building blocks through vacuum‐assisted filtration. The as‐prepared ANF‐BSNs composite nanopapers exhibit considerably enhanced mechanical properties with ultralow BSNs content. These superiorities are wonderfully integrated with exceptional dielectric breakdown strength, prominent volume resistivity, and extremely low dielectric constant and loss, which are far superior to conventional nacre‐mimetic composite nanopapers. Notably, the tensile strength and breakdown strength of ANF‐BSNs composite nanopapers with a mere 1.0 wt% BSNs reach 269.40 MPa and 77.91 kV mm−1, respectively, representing an 87% and 133% increase compared to those of the control ANF nanopaper. Their properties are superior to those of previously reported nacre‐mimetic composite nanopapers and commercial insulating micropapers, indicating that ANF‐BSNs composite nanopapers are a highly promising electrical insulating material for miniaturized high‐power electrical equipment.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献