De‐nitrosylation Coordinates Appressorium Function for Infection of the Rice Blast Fungus

Author:

Hu Hong1,He Wenhui1,Qu Zhiguang1,Dong Xiang1,Ren Zhiyong1,Qin Mengyuan1,Liu Hao1,Zheng Lu1,Huang Junbin1,Chen Xiao‐Lin1ORCID

Affiliation:

1. National Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei Province College of Plant Science and Technology Huazhong Agricultural University Wuhan 430070 China

Abstract

AbstractAs a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S‐nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de‐nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S‐nitrosoglutathione reductase GSNOR‐mediated de‐nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S‐nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de‐nitrosylation. Removing S‐nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR‐mediated de‐nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3