Affiliation:
1. College of Forestry Fujian Agriculture and Forestry University Fuzhou 350002 China
2. Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology School of Future Technology Fujian Agriculture and Forestry University Fuzhou 350002 China
3. College of Landscape Architecture Fujian Agriculture and Forestry University Fuzhou 350002 China
Abstract
AbstractFokienia hodginsii (F. hodginsii), belonging to the genus Fokienia of the Cupressaceae. F. hodginsii has significant application value due to its wood properties and great research value in evolutionary studies as a gymnosperm. However, the genome of F. hodginsii remains unknown due to the large size of gymnosperms genome. Pacific Bioscience sequencing, Hi‐C mapping, whole‐genome Bisulfite Sequencing (BS‐Seq), long‐read isoform sequencing (Iso‐Seq), direct RNA sequencing (DRS), quantitative proteomics, and metabonomics analysis are employed to facilitate genome assembly, gene annotation, and investigation into epigenetic mechanisms. In this study, the 10G F. hodginsii genome is assembled into 11 chromosomes. Furthermore, 50 521 protein‐coding genes are annotated and determined that 65% of F. hodginsii genome comprises repetitive sequences. It is discovered that transposable element (TE)‐including introns is associated with higher expression. The DNA methylome of F. hodginsii reveals that xylem has a higher DNA methylation level compared to callus. Moreover, DRS reveals the significant alterations in RNA full‐length ratio, which potentially associated with poly(A) length (PAL) and alternative polyadenylation (APA). Finally, the morphology measurement and metabonomics analysis revealed the difference of 14 cultivars. In summary, the genomes and epigenetics datasets provide a molecular basis for callus formation in the gymnosperm family.
Funder
National Key Research and Development Program of China