Making High Thermoelectric and Superior Mechanical Performance Nb0.88Hf0.12FeSb Half‐Heusler via Additive Manufacturing

Author:

Yao Zhifu12ORCID,Qiu Wenbin1,Chen Chen2,Bao Xin2,Luo Kaiyi3,Deng Yong4,Xue Wenhua2,Li Xiaofang2,Hu Qiujun5,Guo Junbiao3,Yang Lei6,Hu Wenyu7,Wang Xiaoyi4,Liu Xingjun2,Zhang Qian2,Tanigaki Katsumi8,Tang Jun35

Affiliation:

1. Department of Fundamental Courses Wuxi Institute of Technology WuXi 214121 China

2. School of Materials Science and Engineering and Institute of Materials Genome & Big Data Harbin Institute of Technology Shenzhen 518055 China

3. Key Laboratory of Radiation Physics and Technology of Ministry of Education Institute of Nuclear Science and Technology Sichuan University Chengdu 610064 China

4. State Ethnic Affairs Commission Southwest Minzu University Chengdu 610041 China

5. College of Physics Sichuan University Chengdu 610064 China

6. School of Materials Science & Engineering Sichuan University Chengdu 610064 China

7. Materials Characterization and Preparation Center and Department of Physics Southern University of Science and Technology Shenzhen 518056 China

8. Division of Quantum State of Matter Beijing Academy of Quantum Information Sciences Beijing 100193 China

Abstract

AbstractThermoelectric generators held great promise through energy harvesting from waste heat. Their practical application, however, is greatly constrained by poor raw material utilization and tedious processing in fabricating desired shapes. Herein, a state‐of‐the‐art process is reported for 3D printing the half‐Heusler (Nb0.88Hf0.12FeSb) thermoelectric material using laser powder bed fusion (LPBF). The multi‐dimensional intra‐ and inter‐granular defects created by this process greatly suppress thermal conductivity by providing numerous phonon scattering centers. The resulting LPBF‐fabricated half‐Heusler exhibits a high figure of merit ≈1.2 at 923 K and a single‐leg maximum efficiency of ≈3.3% at a temperature difference (ΔT) of 371 K. Hafnium oxide nanoparticles generated during LPBF effectively prevent crack propagation, ensuring competent mechanical performance and reliable thermoelectric output. The findings highlight the significant potential of LPBF in driving the next industrial revolution of highly efficient and customizable thermoelectric materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3