Nanoparticle Exsolution from Nanoporous Perovskites for Highly Active and Stable Catalysts

Author:

Rudolph Benjamin1,Tsiotsias Anastasios I.2,Ehrhardt Benedikt1,Dolcet Paolo3ORCID,Gross Silvia34ORCID,Haas Sylvio5ORCID,Charisou Nikolaos D.2,Goula Maria A.2ORCID,Mascotto Simone1ORCID

Affiliation:

1. Institut für Anorganische und Angewandte Chemie Universität Hamburg Martin‐Luther‐King‐Platz, 6 20146 Hamburg Germany

2. Department of Chemical Engineering University of Western Macedonia Koila Kozani 50100 Greece

3. Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstrasse 20 76133 Karlsruhe Germany

4. Dipartimento di Scienze Chimiche Università degli Studi di Padova via Marzolo 1 Padova 35131 Italy

5. Deutsches Elektronen Synchrotron (DESY) Notkestr. 85 22607 Hamburg Germany

Abstract

AbstractNanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52Sr0.28Ti0.94Ni0.06Oδ. Using temperature‐programmed reduction (TPR) and X‐ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small‐angle X‐ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2conversion at 800 °C. Time‐on‐stream tests exhibit superior long‐term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2O3catalyst.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3