Phenotypic Screening of Prospective Analgesics Among FDA‐Approved Compounds using an iPSC‐Based Model of Acute and Chronic Inflammatory Nociception

Author:

Black Bryan James1ORCID,Ghazal Rasha El1,Lojek Neal1,Williams Victoria1,Rajput Jai Singh1,Lawson Jennifer M.1

Affiliation:

1. Department of Biomedical Engineering Francis College of Engineering University of Massachusetts Lowell Lowell MA 01854 USA

Abstract

AbstractClassical target‐based drug screening is low‐throughput, largely subjective, and costly. Phenotypic screening based on in vitro models is increasingly being used to identify candidate compounds that modulate complex cell/tissue functions. Chronic inflammatory nociception, and subsequent chronic pain conditions, affect peripheral sensory neuron activity (e.g., firing of action potentials) through myriad pathways, and remain unaddressed in regard to effective, non‐addictive management/treatment options. Here, a chronic inflammatory nociception model is demonstrated based on induced pluripotent stem cell (iPSC) sensory neurons and glia, co‐cultured on microelectrode arrays (MEAs). iPSC sensory co‐cultures exhibit coordinated spontaneous extracellular action potential (EAP) firing, reaching a stable baseline after ≈27 days in vitro (DIV). Spontaneous and evoked EAP metrics are significantly modulated by 24‐h incubation with tumor necrosis factor‐alpha (TNF‐α), representing an inflammatory phenotype. Compared with positive controls (lidocaine), this model is identified as an “excellent” stand‐alone assay based on a modified Z’ assay quality metric. This model is then used to screen 15 cherry‐picked, off‐label, Food and Drug Administration (FDA)‐approved compounds; 10 of 15 are identified as “hits”. Both hits and “misses” are discussed in turn. In total, this data suggests that iPSC sensory co‐cultures on MEAs may represent a moderate‐to‐high‐throughput assay for drug discovery targeting inflammatory nociception.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3