All‐Printed Finger‐Inspired Tactile Sensor Array for Microscale Texture Detection and 3D Reconstruction

Author:

Wang Yilin1,Zhao Jiafeng1,Zeng Xu1,Huang Jingwen1,Wen Yading1,Brugger Juergen2ORCID,Zhang Xiaosheng1

Affiliation:

1. School of Integrated Circuit Science and Engineering University of Electronic Science and Technology of China Chengdu 611731 China

2. Microsystems Laboratory Ecole Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

Abstract

AbstractElectronic skins are expected to replicate a human‐like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all‐printed finger‐inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual‐column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro‐textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self‐calibration. Moreover, an innovative screen‐printing technology incorporating multilayer printing and sacrificial‐layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3