SH2B1 Defends Against Energy Imbalance, Obesity, and Metabolic Disease via a Paraventricular Hypothalamus→Dorsal Raphe Nucleus Neurocircuit

Author:

Li Yuan1,Kim Min‐Hyun12,Jiang Lin1,Baron Lorelei1,Faulkner Latrice D.3,Olson David P.134,Li Xingyu5,Gannot Noam56,Li Peng156,Rui Liangyou147ORCID

Affiliation:

1. Department of Molecular & Integrative Physiology University of Michigan Medical School Ann Arbor MI 48109 USA

2. College of Health Solutions Arizona State University Phoenix AZ 85004 USA

3. Department of Pediatrics University of Michigan Medical School Ann Arbor MI 48109 USA

4. Elizabeth Weiser Caswell Diabetes Institute University of Michigan Ann Arbor MI 48109 USA

5. Life Sciences Institute University of Michigan Ann Arbor MI 48109 USA

6. Department of Biologic and Materials Sciences School of Dentistry University of Michigan Ann Arbor MI 48109 USA

7. Division of Gastroenterology and Hepatology Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA

Abstract

AbstractSH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction‐associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron‐specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1‐null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1‐expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic‐onset or adult‐onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN‐projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN‐projecting PVHSH2B1 neurons protects against diet‐induced obesity. SH2B1 binds to TrkB and enhances brain‐derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.

Funder

National Institutes of Health

American Heart Association

University of Michigan Center for Gastrointestinal Research

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3