Ultrafast Synthesis of Graphene‐Embedded Cyclodextrin‐Metal‐Organic Framework for Supramolecular Selective Absorbency and Supercapacitor Performance

Author:

Zhang Wang1ORCID,Zheng Zhiqiang1,Lin Liwei23ORCID,Zhang Xi4,Bae Minjun2,Lee Jeongyeon5,Xie Ju1,Diao Guowang1,Im Hyung‐Jun2,Piao Yuanzhe2ORCID,Pang Huan1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China

2. Department of Applied Bioengineering Graduate School of Convergence Science and Technology Seoul National University Seoul 08826 South Korea

3. School of Petrochemical Engineering Changzhou University Changzhou Jiangsu 213164 China

4. College of Design Hanyang University Ansan‐si Gyeonggi‐do 15588 South Korea

5. Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 999077 China

Abstract

AbstractLimited by preparation time and ligand solubility, synthetic protocols for cyclodextrin‐based metal‐organic framework (CD‐MOF), as well as subsequent derived materials with improved stability and properties, still remains a challenge. Herein, an ultrafast, environmentally friendly, and cost‐effective microwave method is proposed, which is induced by graphene oxide (GO) to design CD‐MOF/GOs. This applicable technique can control the crystal size of CD‐MOFs from macro‐ to nanocrystals. CD‐MOF/GOs are investigated as a new type of supramolecular adsorbent. It can selectively adsorb the dye molecule methylene green (MG) owing to the synergistic effect between the hydrophobic nanocavity of CDs, and the abundant O‐containing functional groups of GO in the composites. Following high temperature calcination, the resulting N, S co‐doped porous carbons derived from CD‐MOF/GOs exhibit a high capacitance of 501 F g−1 at 0.5 A g−1, as well as stable cycling stability with 90.1% capacity retention after 5000 cycles. The porous carbon exhibits good electrochemical performance due to its porous surface containing numerous electrochemically active sites after dye adsorption and carbonization. The design strategy by supramolecular incorporating a variety of active molecules into CD‐MOFs optimizes the properties of their derived materials, furthering development toward the fabrication of zeitgeisty and high‐performance energy storage devices.

Funder

National Natural Science Foundation of China

Hong Kong Polytechnic University

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3