Homopolar Chemical Bonds Induce In‐Plane Anisotropy in Layered Semiconductors

Author:

Tan Jieling1,Wang Jiang‐Jing1,Zhang Hang‐Ming1,Zhang Han‐Yi1,Li Heming12,Wang Yu2,Zhou Yuxing3,Deringer Volker L.3,Zhang Wei1ORCID

Affiliation:

1. Center for Alloy Innovation and Design (CAID) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China

2. School of Physics Xi'an Jiaotong University Xi'an 710049 China

3. Inorganic Chemistry Laboratory Department of Chemistry University of Oxford Oxford OX1 3QR UK

Abstract

Main‐group layered binary semiconductors, in particular, the III–VI alloys in the binary Ga–Te system are attracting increasing interest for a range of practical applications. The III–VI semiconductor, monoclinic gallium monotelluride (m‐GaTe), has been recently used in high‐sensitivity photodetectors/phototransistors and electronic memory applications due to its anisotropic properties yielding superior optical and electrical performance. Despite these applications, the origin of such anisotropy, namely the complex structural and bonding environments in GaTe nanostructures remain to be fully understood. In the present work, a comprehensive atomic‐scale characterization of m‐GaTe is reported by element‐resolved atomic‐scale microscopy experiments, enabling a direct measure of the in‐plane anisotropy at the sub‐Angstrom level. It is shown that these experimental images compare well with the results of first‐principles modeling. Quantum‐chemical bonding analyses provide a detailed picture of the atomic neighbor interactions within the layers, revealing that vertical GaGa homopolar bonds get stronger when they are distorted and rotated, inducing the strong in‐plane anisotropy. Beyond GaTe, using a systematic screening over the Materials Project database, the four additional low‐symmetric layered crystals with similar distorted tetrahedral patterns are identified, indicating that the homopolar‐bond‐induced anisotropy is a more generic feature in these layered van der Waals (vdW) materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3