Quantitative Single‐Cell Comparison of Sensitization to Radiation and a Radiomimetic Drug for Diverse Gold Nanoparticle Coatings

Author:

Howard Douglas12,Turnbull Tyron1,Wilson Puthenparampil34,Paterson David John5,Milanova Valentina1,Thierry Benjamin1,Kempson Ivan1ORCID

Affiliation:

1. Future Industries Institute University of South Australia Mawson Lakes South Australia 5095 Australia

2. Department of Nuclear Medicine University Hospital Essen Hufelandstrasse 55 45122 Essen Germany

3. UniSA STEM University of South Australia Mawson Lakes South Australia 5095 Australia

4. Department of Radiation Oncology Royal Adelaide Hospital Adelaide South Australia 5000 Australia

5. Australian Synchrotron ANSTO 800 Blackburn Road Clayton Victoria 3168 Australia

Abstract

Metal‐based nanoparticles (NPs) have entered clinical use for enhancing radiotherapy, but the underlying mechanisms remain ambiguous. Herein, single‐cell analysis of two cell lines in response to megavolt irradiation and a radiomimetic drug, neocarzinostatin (NCS) after coculture with gold NPs with different surface coatings, polyethylene glycol (AuPEG), PEG, and transferrin (AuT) or silica (AuSiO2), is reported. Different surface chemistry presents a major challenge for objective comparison between the biological impacts where major differences in cell‐uptake exist. AuSiO2 NPs are the most efficient for promoting radiosensitization despite being associated with cells 10 times less than the actively targeted AuT NPs. Conversely, for cells exposed to NCS, AuSiO2 NPs impede the radiomimetic action and promote cell survival. AuT NPs enhance death of cells in combination with NCS showing that NPs can sensitize against cytotoxic agents in addition to radiation. While NPs contribute to radiosensitization (or enhancing/impeding chemotherapeutic drug activity), due to cell and cell line heterogeneity, the ultimate radiosensitivity of a cell appears to be dominated by its inherent radiosensitivity and how this cell‐regulated response is manipulated by NPs. This is evidenced through comparison of radiobiological response of cells with equivalent NP association rather than equivalent coculture conditions.

Funder

Australian Research Council

University of South Australia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3