In Situ Transfer of Laser‐Induced Graphene Electronics for Multifunctional Smart Windows

Author:

Jing Tongmei12,Nam Han Ku2ORCID,Yang Dongwook2,Lee Younggeun2,Gao Rongke1,Yoo Hongki2,Kwon Soongeun3,Kim Seung‐Woo2,Yu Liandong1ORCID,Kim Young‐Jin2ORCID

Affiliation:

1. College of Control Science and Engineering China University of Petroleum (East China) Qingdao 266555 China

2. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) Science Town Daejeon 34141 South Korea

3. Nano‐Convergence Manufacturing Systems Research Division Korea Institute of Machinery & Materials (KIMM) Daejeon 34103 South Korea

Abstract

The ascent of internet of things (IoT) technology has increased the demand for glass electronics. However, the production of glass electronics necessitates complicated processes, including conductive materials coating and chemical vapor deposition, which entail the use of additional chemicals. Consequently, this raises environmental apprehensions concerning chemical and electronic waste. In this study, a fast, cost‐effective, and simple approach are presented to meet the growing demand for glass electronics while addressing environmental concerns associated with their production processes. The method involves converting polyimide (PI) tape into laser‐induced graphene (LIG) and transferring it onto a glass substrate using ultraviolet laser direct writing technology. This process allows for the fabrication of LIG‐embedded glass without additional chemical treatments in ambient air. Subsequently, the residual PI tape is removed, resulting in LIG‐based glass electrodes with an electrical resistivity of 1.065 × 10−3 Ω m. These LIG electrodes demonstrate efficient functionality for window applications such as defogging, heating, temperature sensing, and solar warming, suitable for automotive and residential windows. The potential scalability of this eco‐friendly technology to IoT‐based smart and sustainable window electronics further underscores its adaptability to meet diverse user needs.

Funder

Korea Forest Service

Korea Institute of Machinery and Materials

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3