Species distribution models predict genetic isolation of Hetaerina vulnerata Hagen in Selys, 1853 (Odonata, Calopterygidae)

Author:

Biddy Austin R.12ORCID,Manthey Joseph D.1ORCID,Ware Jessica L.3ORCID,McIntyre Nancy E.1ORCID

Affiliation:

1. Department of Biological Sciences Texas Tech University Lubbock Texas USA

2. Department of Biology University of Alabama at Birmingham Birmingham Alabama USA

3. American Museum of Natural History New York New York USA

Abstract

AbstractUnderstanding how past and current environmental conditions shape the demographic and genetic distributions of organisms facilitates our predictions of how future environmental patterns may affect populations. The Canyon Rubyspot damselfly (Odonata: Zygoptera: Hetaerina vulnerata) is an insect with a range distribution from Colombia to the arid southwestern United States, where it inhabits shaded mountain streams in the arid southwestern United States. Past spatial fragmentation of habitat and limited dispersal capacity of H. vulnerata may cause population isolation and genetic differentiation, and projected climate change may exacerbate isolation by further restricting the species' distribution. We constructed species distribution models (SDMs) based on occurrences of H. vulnerata and environmental variables characterizing the species' niche. We inferred seven current potential population clusters isolated by unsuitable habitat. Paleoclimate models indicated habitat contiguity in past conditions; projected models indicated some habitat fragmentation in future scenarios. Seventy‐eight H. vulnerata individuals from six of the current clusters were sequenced via ddRADseq and processed with Stacks. Principal components and phylogeographic analyses resolved three subpopulations; Structure resolved four subpopulations. FST values were low (<0.05) for nearby populations and >0.15 for populations separated by expanses of unsuitable habitat. Isolation by distance was an existing but weak factor in determining genomic structure; isolation by environment and the intervening landscape explained a significant proportion of genetic distance. Hetaerina vulnerata populations were shown to be isolated by a lack of tree canopy coverage, an important habitat predictor for oviposition and territoriality. Thus, H. vulnerata populations are likely separated and are genetically isolated. Integrating SDMs with landscape genetics allowed us to identify populations separated by distance and unsuitable habitat, explaining population genetic patterns and probable fates for populations under future climate scenarios.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3