In the heat of the moment: Including realistic thermal fluctuations results in dramatically altered key population parameters

Author:

Boerlijst Sam P.12ORCID,Boelee Eline2ORCID,van Bodegom Peter M.1,Schrama Maarten1

Affiliation:

1. Department of Environmental Biology, Center for Environmental Research Leiden University of Leiden Leiden the Netherlands

2. Division of Inland Water Systems Deltares Delft the Netherlands

Abstract

AbstractTemperature is commonly acknowledged as one of the primary forces driving ectotherm vector populations, most notably by influencing metabolic rates and survival. Although numerous experiments have shown this for a wide variety of organisms, the vast majority has been conducted at constant temperatures and changes therein, while temperature is far from constant in nature, and includes seasonal and diurnal cycles. As fluctuating temperatures have been described to affect metabolic processes at (sub)cellular level, this calls for studies evaluating the relative importance of temperature fluctuations and the changes therein. To gain insight in the effects of temperature fluctuations on ectotherm development, survival, and sex ratio, we developed an inexpensive, easily reproducible, and open‐source, Arduino‐based temperature control system, which emulates natural sinusoidal fluctuations around the average temperature. We used this novel setup to compare the effects of constant (mean) temperatures, most commonly used in experiments, block schemes, and natural sinusoidal fluctuations as well as an extreme variant with twice its amplitude using the cosmopolitan mosquito species Culex pipiens s.l. as a study organism. Our system accurately replicated the preprogrammed temperature treatments under outdoor conditions, even more accurately than traditional methods. While no effects were detected on survival and sex ratio within the ranges of variation evaluated, development was sped up considerably by including temperature fluctuations, especially during pupation, where development under constant temperatures took almost a week (30%) longer than under natural fluctuations. Doubling the amplitude further decreased development time by 1.5 days. These results highlight the importance of including (natural) oscillations in experiments on ectotherm organisms – both aquatic and terrestrial – that use temperature as a variable. Ultimately, these results have major repercussions for downstream effects at larger scales that may be studied with applications such as ecological niche models, disease risk models, and assessing ecosystem services that rely on ectotherm organisms.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3