A matter of scale: Identifying the best spatial and temporal scale of environmental variables to model the distribution of a small cetacean

Author:

Goh Tiffany12ORCID,Jessopp Mark12,Rogan Emer1,Pirotta Enrico3

Affiliation:

1. School of Biological, Earth and Environmental Sciences University College Cork, Enterprise Centre, Distillery Fields Cork Ireland

2. MaREI Centre, Beaufort Building, Environmental Research Institute University College Cork Cork Ireland

3. Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews Fife United Kingdom

Abstract

AbstractThe importance of scale when investigating ecological patterns and processes is recognised across many species. In marine ecosystems, the processes that drive species distribution have a hierarchical structure over multiple nested spatial and temporal scales. Hence, multi‐scale approaches should be considered when developing accurate distribution models to identify key habitats, particularly for populations of conservation concern. Here, we propose a modelling procedure to identify the best spatial and temporal scale for each modelled and remotely sensed oceanographic variable to model harbour porpoise (Phocoena phocoena) distribution within the Irish Exclusive Economic Zone. Harbour porpoise sightings were recorded during dedicated line‐transect aerial surveys conducted in the summers of 2016, 2021 and 2022. Binary generalised additive models were used to assess the relationships between porpoise presence and oceanographic variables at different spatial (5–40 km) and temporal (daily, monthly and across survey period) scales. Selected variables included sea surface temperature, thermal fronts, chlorophyll‐a, sea surface height, mixed layer depth and salinity. A total of 30,514 km was covered on‐effort with 216 harbour porpoise sightings recorded. Overall, the best spatial scale corresponded to the coarsest resolution considered in this study (40 km), while porpoise presence showed stronger association with oceanographic variables summarised at a longer temporal scale. Habitat models including covariates at coarse spatial and temporal scales may better reflect the processes driving availability and abundance of resources at these large scales. These findings support the hypothesis that a multi‐scale approach should be applied when investigating species distribution. Identifying suitable spatial and temporal scale would improve the functional interpretation of the underlying relationships, particularly when studying how a small marine predator interacts with its environment and responds to climate and ecosystem changes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3