Simple and low‐cost preparation of functionalised graphene by microwave expansion combined with ball milling grafting

Author:

Zhang Xiaoyi1,Wang Shuo1ORCID,Bao Xuhao1,Liu Zhanjun1,Meng Qingshi1ORCID

Affiliation:

1. College of Aerospace Engineering Shenyang Aerospace University Shenyang China

Abstract

AbstractThe preparation of functionalised graphene often involves consuming significant amounts of organic solvents, complicated steps, and expensive equipment. This study presented a simple, low‐cost, and efficient method for preparing well‐dispersed functionalised graphene. This method involved the microwave heating of commercial graphene precursors and ball milling of grafted expanded graphite, resulting in a short and straightforward preparation process without requiring large amounts of organic solvents. This process enabled the preparation of few‐layer graphene with a thickness of only 3.5 ± 0.5 nm. During this process, the majority of the surface oxygen‐containing groups were replaced by polyetheramine (D2000) at a grafting rate of up to 5.14%, which improved the interface adhesion strength between the graphene and the epoxy resin. The fabricated altered graphene notably enhanced the mechanical characteristics of the epoxy resin., that is, the toughening effect reached up to 171% with a graphene content of only 0.3 wt%, while the Young's modulus and tensile strength values increased by 54% and 39%, respectively. This process is cost‐effective, easy to operate, and highly efficient, making it suitable for the large‐scale production of well‐dispersed functionalised graphene.Highlights Pioneers mechanical chemical energy in graphene, a new materials science direction. First ball milling on microwave graphene, merging milling benefits with graphene. Ball milling cuts D2000 grafting time on graphene, boosting efficiency. Reduces organic solvent use, cutting costs and environmental effects. Ball milling lowers costs and impacts, aiding graphene material commercia‐lization.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3