Living on the edge: Predicting songbird response to management and environmental changes across an ecotone

Author:

Van Lanen Nicholas J.123ORCID,Monroe Adrian P.1,Aldridge Cameron L.1

Affiliation:

1. U.S. Geological Survey, Fort Collins Science Center Fort Collins Colorado USA

2. Graduate Degree Program in Ecology, Colorado State University Fort Collins Colorado USA

3. Bird Conservancy of the Rockies Brighton Colorado USA

Abstract

AbstractEffective wildlife management requires robust information regarding population status, habitat requirements, and likely responses to changing resource conditions. Single‐species management may inadequately conserve communities and result in undesired effects to non‐target species. Thus, management can benefit from understanding habitat relationships for multiple species. Pinyon pine and juniper (Pinus spp. and Juniperus spp.) are expanding into sagebrush‐dominated (Artemisia spp.) ecosystems within North America and mechanical removal of these trees is frequently conducted to restore sagebrush ecosystems and recover Greater Sage‐grouse (Centrocercus urophasianus). However, pinyon‐juniper removal effects on non‐target species are poorly understood, and changing pinyon‐juniper woodland dynamics, climate, and anthropogenic development may obscure conservation priorities. To better predict responses to changing resource conditions, evaluate non‐target effects of pinyon‐juniper removal, prioritize species for conservation, and inform species recovery within pinyon‐juniper and sagebrush ecosystems, we modeled population trends and density‐habitat relationships for four sagebrush‐associated, four pinyon‐juniper‐associated, and three generalist songbird species with respect to these ecosystems. We fit hierarchical population models to point count data collected throughout the western United States from 2008 to 2020. We found regional population changes for 10 of 11 species investigated; 6 of which increased in the highest elevation region of our study. Our models indicate pinyon‐juniper removal will benefit Brewer's Sparrow (Spizella breweri), Green‐tailed Towhee (Pipilo chlorurus), and Sage Thrasher (Oreoscoptes montanus) densities. Conversely, we predict largest negative effects of pinyon‐juniper removal for species occupying early successional pinyon‐juniper woodlands: Bewick's Wren (Thryomanes bewickii), Black‐throated Gray Warblers (Setophaga nigrescens), Gray Flycatcher (Empidonax wrightii), and Juniper Titmouse (Baeolophus ridgwayi). Our results highlight the importance of considering effects to non‐target species before implementing large‐scale habitat manipulations. Our modeling framework can help prioritize species and regions for conservation action, infer effects of management interventions and a changing environment on wildlife, and help land managers balance habitat requirements across ecosystems.

Funder

U.S. Bureau of Land Management

U.S. Geological Survey

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3