Regulating the interfacial chemistry of graphite in ethyl acetate‐based electrolyte for low‐temperature Li‐ion batteries

Author:

Che Ling1,Hu Zhaowen1,Zhang Tao1,Dai Peiming1,Chen Chengyu1,Shen Chao1,Huang Haitao2,Jiao Lifang3,Jin Ting123ORCID,Xie Keyu1

Affiliation:

1. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Center for Nano Energy Materials Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) Xi'an China

2. Department of Applied Physics and Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong China

3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast) College of Chemistry Nankai University Tianjin China

Abstract

AbstractLithium‐ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li+ transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low‐temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA‐based electrolytes via synergies of anions. ODFB with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI, the reduction of both anions constructs an inorganic‐rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g−1 and 2.5 Ah LiFePO4||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO4||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room‐temperature capacity even at −40°C.

Funder

Natural Science Foundation of Chongqing

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3