Mn‐doping ensuring cobalt silicate hollow spheres with boosted electrochemical property for hybrid supercapacitors

Author:

Ding Chongtao1,Wang Yang1,Wang Yu1,Dong Xueying1,Meng Changgong12,Zhang Yifu1ORCID

Affiliation:

1. School of Chemistry Dalian University of Technology Dalian China

2. College of Environmental and Chemical Engineering Dalian University Dalian China

Abstract

AbstractRecently, transition metal silicates (TMSs) have garnered significant attention as promising candidates for electrode materials in supercapacitors (SCs), especially cobalt silicate (Co2SiO4, CoSi) related materials. However, due to the poor conductivity and narrow potential range of CoSi, its electrochemical properties are not fully developed and far from desirable. Herein, to enhance the electrochemical properties of CoSi, hollow spheres of Mn‐doped CoSi (CoMnSi) were fabricated through a hydrothermal method. The dopant Mn facilitates the formation of CoMnSi hollow spheres assembled by nanosheets and these nanosheets connect with each other to form the core‐shell hollow architecture. The effect of the Mn/Co ratio on the electrochemical properties of CoSi has been investigated. CoMnSi‐2 (Mn/Co = 1/9) displays the specific capacitance of 495 F g−1 at 0.5 A g−1, surpassing to that of CoSi (279 F g−1 at 0.5 A g−1) and manganese silicate (denoted as MnSi, 38 F g−1 at 0.5 A g−1). The CoMnSi‐2//active carbon hybrid supercapacitor (CoMnSi‐2//AC HSC) achieves the specific capacitance with 181 mF cm−2 (151 F g−1) at 1 mA cm−2 and energy density with 0.644 Wh m−2 at 2 W m−2. The device displays a practical application by powering the LED lamp circuit bulb working for more than 25 min repeatedly. The performance achieved by CoMnSi is superior to some state‐of‐the‐art electrode materials of TMSs. Density functional theory calculations have provided evidence that Mn‐doping enhances the electronic conductivity and reduces the electron transport barrier of CoSi, boosting its electrochemical properties. This work supplies a strategy for tailoring structures of TMSs to enhance their electrochemical performance.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3