Mechanistic Studies of Continuous Partial Methane Oxidation on Cu−Zeolites Using Kinetic and Spectroscopic Methods

Author:

Mikes Andrew D.1ORCID,Kilburn Lauren1ORCID,Gounder Rajamani1ORCID

Affiliation:

1. Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette IN USA 47907

Abstract

AbstractOver the past few decades, a significant amount of research effort has focused on investigating the active site requirements and reaction mechanisms for partial methane oxidation (PMO) to methanol over copper–exchanged zeolites during stoichiometric and stepwise chemical looping routes. More recently, research efforts have expanded to include investigating the PMO reaction in a continuous catalytic regime, primarily focusing on determining the influence of catalyst composition on Cu speciation and structure and, in turn, on PMO rate and selectivity. The structures of candidate Cu active sites are commonly studied using a combination of ex situ and in situ spectroscopic approaches. In this perspective, we critically examine the prior literature on catalytic PMO over Cu–zeolites to identify key knowledge gaps that remain in our understanding as motivation for future research efforts. We identify opportunities for future research to address these gaps by adapting analogous interrogation techniques that have been successfully used to elucidate the active site requirements and mechanistic details of another catalytic redox reaction cycle on Cu–zeolites, the selective catalytic reduction (SCR) of nitrogen oxides (NOx).

Funder

Office of Science

Basic Energy Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3