Enrollment forecast for clinical trials at the portfolio planning phase based on site‐level historical data

Author:

Zhong Sheng1ORCID,Xing Yunzhao1,Yu Mengjia1,Wang Li1

Affiliation:

1. Statistical Innovation Group, Data and Statistical Sciences, AbbVie Inc. North Chicago Illinois USA

Abstract

AbstractAn accurate forecast of a clinical trial enrollment timeline at the planning phase is of great importance to both corporate strategic planning and trial operational excellence. The naive approach often calculates an average enrollment rate from historical data and generates an inaccurate prediction based on a linear trend with the average rate. Under the traditional framework of a Poisson–Gamma model, site activation delays are often modeled with either fixed initiation time or a simple random distribution while incorporating the user‐provided site planning information to achieve good forecast accuracy. However, such user‐provided information is not available at the early portfolio planning stage. We present a novel statistical approach based on generalized linear mixed‐effects models and the use of non‐homogeneous Poisson processes through the Bayesian framework to model the country initiation, site activation, and subject enrollment sequentially in a systematic fashion. We validate the performance of our proposed enrollment modeling framework based on a set of 25 preselected studies from four therapeutic areas. Our modeling framework shows a substantial improvement in prediction accuracy in comparison to the traditional statistical approach. Furthermore, we show that our modeling and simulation approach calibrates the data variability appropriately and gives correct coverage rates for prediction intervals of various nominal levels. Finally, we demonstrate the use of our approach to generate the predicted enrollment curves through time with confidence bands overlaid.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3