Biodegradable poly(lactic acid)/poly(propylene carbonate) blend with enhanced mechanical properties and heat resistance by uniaxial pre‐stretching

Author:

Zheng Gaofei12,Han Lijing1ORCID,Zheng Bihuang12,Bian Junjia1,Zhang Huiliang12

Affiliation:

1. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China

2. School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China

Abstract

AbstractBiodegradable poly(lactic acid)/poly(propylene carbonate) (PLA/PPC) blends with balanced strength, ductility, and heat resistance were prepared by combining the modification of 30 wt% PPC and uniaxial pre‐stretching at 60°C. The undrawn PLA/PPC blend fractured in a brittle way due to the network structure composed of cohesional entanglements. After pre‐stretching, the elongation at break was increased to 229.4% at pre‐stretching ratio (PSR) of only 0.5, which should be attributed to the destruction of the network structure of cohesional entanglements and the orientation of PPC component in PLA matrix. With the increase of PSR, the modulus, strength at yielding, and break were improved obviously (2433.4, 76.1, and 98.3 MPa at PSR = 2.5) whereas the elongation at break (51.7% at PSR = 2.5) reduced gradually because of the formation of orientation, mesophase, and crystal phase. However, the elongation at break was still larger than that of neat PLA (6.8%) and undrawn PLA/PPC blend (12.3%), indicating that the uniaxial pre‐stretching was an effect way to strengthen and toughen PLA blends. Significantly, the heat resistance of ps‐PLA/PPC blend was increased obviously with increasing the PSR, which will promote the widespread application of the blends.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3