Photothermal‐boosted polaron transport in Fe2O3 photoanodes for efficient photoelectrochemical water splitting

Author:

Hu Xiaoqin12ORCID,Huang Jing2,Cao Yu1,He Bing1,Cui Xun1ORCID,Zhu Yunhai1,Wang Yang2,Chen Yihuang3,Yang Yingkui1,Li Zhen2,Liu Xueqin1ORCID

Affiliation:

1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan Hubei China

2. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan Hubei China

3. College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang China

Abstract

AbstractIntroduction of the photothermal effect into transition‐metal oxide photoanodes has been proven to be an effective method to improve the photoelectrochemical (PEC) water‐splitting performance. However, the precise role of the photothermal effect on the PEC performance of photoanodes is still not well understood. Herein, spinel‐structured ZnFe2O4 nanoparticles are deposited on the surface of hematite (Fe2O3), and the ZnFe2O4/Fe2O3 photoanode achieves a high photocurrent density of 3.17 mA cm−2 at 1.23 V versus a reversible hydrogen electrode (VRHE) due to the photothermal effect of ZnFe2O4. Considering that the hopping of electron small polarons induced by oxygen vacancies is thermally activated, we clarify that the main reason for the enhanced PEC performance via the photothermal effect is the promoted mobility of electron small polarons that are bound to positively charged oxygen vacancies. Under the synergistic effect of oxygen vacancies and the photothermal effect, the electron conductivity and PEC performance are significantly improved, which provide fundamental insights into the impact of the photothermal effect on the PEC performance of small polaron‐type semiconductor photoanodes.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3