Early detection of Kentucky bluegrass and perennial ryegrass responses to drought stress by measuring chlorophyll fluorescence parameters

Author:

Itam Michael1,Hall David2,Kramer David2,Merewitz Emily1ORCID

Affiliation:

1. Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA

2. MSU‐DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology Michigan State University East Lansing Michigan USA

Abstract

AbstractKentucky bluegrass (Poa pratensis L.; drought resistant) and perennial ryegrass (Lolium perenne L.; drought sensitive) are economically important grass species contrasting in drought stress resistance. This study determined the optimal chlorophyll fluorescence parameters to indicate drought incidence and whether the parameters differentiate intra‐ and interspecies variations in drought stress. For each species, nine cultivars were exposed to well‐watered or drought (water withheld) conditions in growth chambers containing high‐throughput photosynthetic imagers to track real‐time responses of maximum quantum efficiency of photosystem II (Fv/Fm), quantum yield of photosystem II (ΦII), non‐photochemical quenching (NPQ), energy‐dependent quenching (qE), and photoinhibition‐associated quenching (qI). Soil moisture content and relative water content of leaf tissues were evaluated. Due to drought, Fv/Fm and ΦII decreased for cultivars of both species but earlier for perennial ryegrass compared to Kentucky bluegrass. The NPQ, qI, and qE values exhibited more dynamic and earlier changes due to drought compared to Fv/Fm and ΦII and allowed for early, mid, and late drought responses to be illustrated. Drought induced an increase in NPQ, qI, and qE values, which corresponded to activation of photoprotection mechanisms, and was exhibited earlier for perennial ryegrass compared to Kentucky bluegrass. As the drought treatment progressed, a decrease or stabilization of low values of NPQ, qI, and qE was observed, and the lowest values were associated with the most drought‐sensitive cultivars. These results indicate important stress tolerance protection mechanisms for grass species and will broadly impact basic and applied grass research as a nondestructive phenotyping tool.

Funder

United States Golf Association

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3